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Abstract
A binary lattice gas model that allows for multiple occupancy of lattice
sites, inspired by recent coarse-grained descriptions of solutions of interacting
polymers, is investigated by combining the steepest descent approximation
with an exploration of the multidimensional energy landscape and by Gibbs
ensemble Monte Carlo simulations. The one-component version of the model,
involving on site and nearest-neighbour interactions, is shown to exhibit
microphase separation into two sub-lattices with different mean occupation
numbers. The symmetric two-component version of the multiple occupancy
lattice gas is shown to exhibit a demixing transition into two phases above a
critical mean occupation number.

PACS number: 61.20.Ja

1. Introduction

Simple fluids are dominated by excluded volume effects, which, within lattice gas models,
are accounted for by the single occupancy constraint, whereby each site on a lattice can
be occupied by at most one molecule. Effective interactions between macromolecules or
self-assembled aggregates in complex fluids, on the other hand, can be ‘soft’, i.e. lack an
impenetrable core. A good example is the effective pair potential between the centres of
mass (CM) of interacting polymer coils, obtained by taking statistical averages over monomer
conformations for fixed distances r between the CMs [1, 2]. Recent extensive simulations of
self-avoiding walk polymers carried out over a wide range of concentrations show that the
repulsive state-dependent effective CM pair potential is of roughly Gaussian shape, of width
governed by the polymer radius of gyration, and of maximum amplitude v(r = 0) ≈ kBT [3];
this behaviour reflects the fractal nature of polymers in good solvent, leading to a low entropic
cost at full overlap. Several other complex fluids have been shown to exhibit ultrasoft coarse-
grained interactions, e.g. star polymers [4] or effective particles considered within dissipative
particle dynamics [5].
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The penetrability of the corresponding ‘Gaussian core’ (GC) model, v(r) = ε exp(−r2),
leads to interesting phase behaviour at low temperatures (T ∗ = kBT /ε � 1), [6, 7], but under
conditions relevant for polymer solutions (T ∗ ≈ 1), the model behaves like a ‘mean field’
fluid [8]. However, binary Gaussian core mixtures, characterized by different energy scales
εαβ for the three types of pairs, lead to phase separation for moderate couplings [8–10]. This
demixing, which occurs for purely repulsive, penetrable interactions, is of a very different
nature than the usual phase separation of incompatible fluids, which is generally driven by the
long-range attractive intermolecular forces.

In this paper we examine the simplest lattice gas representation of penetrable particles,
in an effort to gain further insight into this novel class of phase transitions. The penetrable
nature of the effective interaction is reflected by allowing multiple occupancy of each lattice
site. The simplest version of the model involves only on-site interactions of particles of the
two species, with different energy penalties for the different types of pairs. While a steepest
descent estimate of the grand partition function predicts phase separation, it will be shown
that a more accurate treatment reveals the spurious nature of this transition, as expected for
an effectively zero-dimensional system. The addition of nearest-neighbour interactions leads
to a genuine demixing transition, similar to that predicted for continuous versions of soft core
mixtures examined earlier within the random phase approximation (RPA) [8–10]. We explore
this behaviour by mean-field theories and Gibbs ensemble Monte Carlo simulations. We also
study the topology of the energy landscape.

2. The multi-occupancy model

Consider a d-dimensional lattice of L sites and coordination number q, which can accommodate
particles of two species. The occupancy of each site is characterized by the two-component
vector of integer occupation numbers ni = (n(i)

1 , n
(i)
2

)
, 1 � i � L. Particles interact only when

they are on the same site or on nearest-neighbour (n.n.) sites. The on-site and off-site couplings
are characterized by 2 × 2 matrices of interaction energies εαβ and ηαβ(1 � α, β � 2). In
terms of the occupation numbers, the energy of the system reads

E({ni}) = 1

2

∑
i

ni
t · ε · ni − 1

2

∑
i

∑
α

εααn(i)
α +

∑
〈ij〉

ni
t · η · nj (1)

where the last summation is over n.n. sites only. For given chemical potentials µ = (µ1, µ2)

of the two species, the grand partition function is

� =
∑
{ni }

exp
{
β
∑

i µ · ni

}
∏

α,i n
(i)
α !

exp{−βE({ni})}

=
∑
{ni }

L∏
i=1

eβµ∗ · ni

n
(i)
1 !n(i)

2 !
exp


−β


1

2

∑
i

ni
t · ε · ni +

∑
〈ij〉

ni
t · η · nj




 . (2)

The first sum is over all possible distributions of occupation numbers of the L sites and the
effective chemical potentials µ∗

α = µα − εαα/2, µ∗ = (µ∗
1, µ

∗
2) have been introduced.

The main task of this paper is to approximately evaluate the grand partition function (2)
as a function of the temperature T (β = 1/(kBT )) and of the chemical potentials µ∗

1 and µ∗
2 of

the two species. Using the standard rules of statistical mechanics, this will lead directly to the
pressure P = kBT ln(�)/V and to the mean occupation numbers n∗

1 and n∗
2, and hence to the

composition of the mixture. Phase separation will be signalled by a discontinuous change of
the mean occupation number for well-defined values of P,µ∗

1 and µ∗
2. We shall first consider
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the simplest version of the model which only involves on-site interactions (i.e. η = 0), before
examining the case including nearest-neighbour interactions.

3. The case of on-site interactions only

In the absence of couplings between particles on different sites, the grand partition function
(2), with η = 0, factorizes into L identical single site functions �site:

� =
[ ∞∑

n1,n2=0

exp(βµ∗ · n)

n1!n2!
exp

(
−1

2
nt · ε · n

)]L

= �L
site. (3)

The single site partition sum is not tractable analytically. For sufficiently large chemical
potentials, implying mean occupation numbers n∗

1, n
∗
2 � 1, the latter may be treated as

continuous variables, and the sums in equation (3) replaced by integrals

�site ≈
∫ ∞

n1=0

∫ ∞

n2=0

exp
(
βµ∗ · n − 1

2 nt · ε · n
)

�(n1 + 1)�(n2 + 1)
dn1 dn2. (4)

The integrand is sharply peaked around the most probable occupation numbers n∗ = (n∗
1, n

∗
2).

Adopting the standard steepest descent method, we expand the logarithm of the integrand
around n∗ to second-order in δn = n − n∗, i.e.:

βµ∗ · n − 1

2
βnt · ε · n −

∑
α=1,2

ln �(nα + 1) ≈ βµ∗ · n∗ − 1

2
βn∗t · ε · n∗ −

∑
α

ln �(n∗
α + 1)

+

(
βµ∗ − βn∗t · ε −

(
ψ(n∗

1 + 1)

ψ(n∗
2 + 1)

))
· δn − 1

2
δnt ·σ · δn (5)

where ψ(n) = d ln �(n)/dn is the digamma function, and the covariance matrix σ is given by

σ =
(

βε11 + ψ(1)(n∗
1 + 1) βε12

βε12 βε22 + ψ(1)(n∗
2 + 1)

)
(6)

with ψ(1)(n) = dψ(n)/dn (trigamma function). The location of the maximum follows from
the extremum condition

βµ∗ − βn∗t · ε −
(

ψ(n∗
1 + 1)

ψ(n∗
2 + 1)

)
= 0 (7)

which provides the relation between µ∗ and n∗. Inserting the expansion (5) into the integrand
in equation (4) and extending the integral to negative occupation numbers (which is again
justified provided n∗

α � 1), the resulting Gaussian integral is easily evaluated and leads
directly to the following equation of state

βPv0 = n∗
1ψ(n∗

1 + 1) − ln �(n∗
1 + 1) + n∗

2ψ(n∗
2 + 1)

− ln �(n∗
2 + 1) +

1

2
n∗t · ε · n∗ + ln

(
2π√|σ|

)
(8)

where v0 = V/L is the volume per site.
In the special case ε = 0 the partition function (3) can be evaluated exactly to yield the

ideal gas equation of state βPv0 = exp(βµ1) + exp(βµ2) = 〈n1〉 + 〈n2〉. Using the Stirling
approximation �(1 + n) ≈ √

2πn
(

n
e

)n
, the asymptotic virial pressure given by the saddle

point approximation (8) reduces to βPv0 = n∗
1 + n∗

2 + 1 in the limit of large n. The extra
constant is in fact negligible in this limit and its origin can be traced to the approximation of
the integrand by a Gaussian. If we take the Taylor expansion (5) to third-order (instead of
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second), then the cubic term in δn skews the Gaussian towards higher occupation numbers.
The mean occupation numbers no longer coincide with the maximum position, but are slightly
shifted to 〈ni〉 = n∗

i + 1
2 , while equation (8) remains unaffected. In this way the ideal gas

equation of state βPv0 = 〈n1〉 + 〈n2〉 is recovered. Since we are interested in the large 〈n〉
limit, we restrict ourselves from now on to the second-order expansion in equation (5).

The virial pressure in equation (8), derived on the basis of steepest descent, is
thermodynamically inconsistent with the relation (7) between chemical potentials and mean
occupation numbers (identical to their most probable values). If the latter is integrated,
an expression for the pressure follows which coincides with equation (8), but without the
logarithmic fluctuation term. The situation is reminiscent of the RPA treatment of continuous
penetrable (e.g. Gaussian) core mixtures, where the virial and compressibility routes lead to
equations of state similar in structure to equation (8) with (virial) and without (compressibility)
the last term [7–10]. The two equations of state become identical in the high density limit
pointing to the asymptotic ‘mean-field fluid’ nature of systems of penetrable particles.

In view of the above analogy, it is not surprising that the equation of state (8) leads to phase
separation between sites with different mean occupation numbers when ε2

12 > ε11ε22. This
predicted phase separation is obviously spurious, because of the effectively zero-dimensional
nature of the model when restriction is made to on-site couplings. The above steepest descent
treatment has two obvious shortcomings. The first deficiency is the replacement of the discrete
sums in equation (3) by an integral, as well as the extension of the lower bounds in the integral
(4) to −∞; these approximations are expected to break down for low mean occupation numbers
n∗

α , or equivalently for low chemical potentials µ∗
α . This deficiency can be easily removed by

reverting from the integrals to discrete sums over an interval of values of n∗ in the vicinity of
the most probable values n∗ and retaining the continuous integrals outside this interval. In the
one-component case, the resulting single-site partition function reads

�site ≈
nhigh−1∑
n=nlow

1

n!
eβµ∗n e− 1

2 βεn2
+

exp{n∗ψ(n∗ + 1)}
�(n∗ + 1)

exp

{
1

2
βεn∗2

}√
π

2σ

×
[

erf

(√
σ

2
(nlow − n∗)

)
+ erf

(√
σ

2
n∗
)

− erf

(√
σ

2
(nhigh − n∗)

)
+ 1

]
.

(9)

where nlow = max(	n∗
−m, 0) and nhigh − 1 = 	n∗
 + m− 1, and the ceil function 	
 rounds
to the nearest higher integer.

The steepest descent result (8) is recovered for m = 0 and sufficiently high n∗, such that
erf(n∗√σ/2) = 1. Results for the equation of state are shown in figure 1. Equation (8) is
seen to yield surprisingly accurate results, even at relatively low densities (n∗ ≈ 1) and only
breaks down in the n∗ → 0 limit.

A more fundamental shortcoming of the steepest descent method is that equation (7) in
fact predicts two maxima n∗, separated by a saddle point. The situation is pictured in figure 2.
The steepest descent method includes only the contribution of the highest (global) maximum
of the integrand to the partition function (4). This approximation leads to a discontinuous
jump of the composition vector n∗ when the two maxima become equal and hence to a
first-order phase transition. In reality, when the contributions of the two maxima of the
configuration integral (4) are properly included, the mean occupation numbers 〈n1〉 and 〈n2〉
vary continuously with the chemical potentials of the two species, as illustrated in figure 3,
according to expectation.
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Figure 1. Equation of state of the one-component lattice gas with on site interaction energy
ε = 1kBT . The normalized pressure βPv0 is plotted as a function of the mean occupation number
〈n〉 of one cell. Shown are values obtained by using the steepest descent method (dashed curve,
circles), the pressure consistent with the chemical potential (7) (dash-dotted line, squares) and the
pressure obtained from the grand canonical partition sum by explicitly summing 2m terms around
the maximum of the Boltzmann factor as explained in the text with m = 100 (continuous line,
triangles). At this value the correction term in equation (9) is well below 10−5, so that the resulting
pressure can be considered nearly exact. The steepest descent method is seen to be very accurate
except, as expected, at low densities.

Figure 2. The Boltzmann factor exp(βµ · n − βE(n))/(n1!n2!) as a function of the mean
occupation numbers n1, n2 for the lattice system with on site interaction ε11 = ε22 =
0.1kBT , ε12 = 0.2kBT and no nearest-neighbour interaction, at the chemical potentials µ1 =
6.5kBT ,µ2 = 6.0kBT . The appearance of a secondary maximum is clearly seen.

4. Including nearest-neighbour interactions

We now consider the model defined by equations (1) and (2) and including n.n. interactions
between particles of both species, i.e. η �= 0. The partition function (2) no longer factorizes
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Figure 3. Mean occupation numbers 〈n1〉, 〈n2〉 in a symmetric binary lattice gas mixture for
on-site interaction energies ε11 = ε22 = 0.1kBT ε12 = 0.2kBT and vanishing nearest neighbour
interaction as a function of chemical potential µ2, keeping µ1 = 6.5kBT fixed. The values were
calculated using a simple generalization of equation (9). As expected, the occupation numbers
vary continuously with chemical potentials in this effectively zero-dimensional system.

into single site sums. Proceeding as in section 3, we replace the discrete sums over occupation
numbers by integrals and approximate the integrand by Gaussians centred on each of the local
maxima. The latter are determined by a generalization of equation (7), namely

βµ∗ = βn∗
i

t · ε +
∑
in.n.j

βn∗
j

t · η +

(
ψ(n∗

1,i + 1)

ψ(n∗
2,i + 1)

)
1 � i � L. (10)

In the limit η → 0, the n∗
i on different sites are independent and can each take two values,

corresponding to the two maxima found in section 3. When the n.n. interactions are switched
on, the n∗

i are coupled so that a complex energy landscape emerges in 2L-dimensional
occupation-number space, featuring a rapidly increasing number of maxima of the Boltzmann
factor. By continuity one can still expect 2L solutions to equations (10) in the most general
case, at least for sufficiently weak coupling. The approximate grand partition function now
reads

� =
∑
{n∗

i }
exp


1

2

∑
i

n∗
i · ε · n∗

i +
∑
i,α

n∗
i,αψ(n∗

i,α + 1) −
∑
i,α

ln �(n∗
i,α + 1) +

∑
〈ij〉

n∗
i ·η · n∗

j




×
∫

dδ n1 · · ·
∫

dδ nL exp


−


1

2

∑
i

δni · σi · δni +
∑
〈ij〉

βδni · η · δnj





(11)

where the covariance matrices σi are obvious generalizations of equation (6), with n∗
α replaced

by n∗
α,i .
The grand partition function is thus expressed as a sum over all ‘configurations’ {n∗

i }
which maximize the integrand in the continuous representation generalizing equation (4), i.e.
which satisfy the set of equations (10). The Gaussian fluctuation integrals in the second factor
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depend on the configuration {n∗
i } through the covariance matrices σi . For given {σi} the

coupled Gaussian integrals can be calculated explicitly by a standard normal mode analysis.
The locations of the local maxima n∗

i depend on the occupation numbers of the
neighbouring cells n∗

j via (10). If this were not the case, then the partition function (11)
would exactly factor into a product of a partition sum that is isomorphic to that of an Ising
model (first factor in (11)) and the partition sum of a Gaussian model. The phase behaviour
of a very similar system has been investigated in [11]. The model we examine can thus
only be mapped onto an Ising (plus Gaussian) model in the limit of weak nearest-neighbour
interactions η.

In order to gain further insight, we consider the ‘ground state’, corresponding to the low
temperature or strong coupling limit. In that limit all n∗

i corresponding to the lowest minimum
on the total energy surface are expected to be equal (n∗

i = n∗) and determined by a single
extremum condition

βµ∗ = βn∗t · (ε + qη) +

(
ψ(n∗

1 + 1)

ψ(n∗
2 + 1)

)
(12)

where q is the coordination number of the lattice. In the low temperature limit only the
contribution of this one configuration to the sum in equation (11) is taken into account.
The second-factor in this equation then becomes invariant with respect to translations, so that
the corresponding integral is best evaluated in Fourier space.

We therefore introduce the Fourier components of the density fluctuations

δñk = 1

L

∑
j

δnj eik · Rj (13)

where rj denotes the position of the lattice site j in units of the lattice constant. Assuming
Born-von Karman boundary conditions the wave vector k can only assume discrete values.
The total interaction energy can be written in Fourier space as

1

2

∑
i

δni · σ · δni +
∑
〈ij〉

βδni · η · δnj = L

2

∑
k

δñ−k · D(k) · δñk (14)

where the matrix D(k) is given by

D(k) = σ + βη
∑
jn.n.0

eik · Rj . (15)

For a simple cubic lattice we obtain

D(k) = σ + 2(cos kx + cos ky + cos kz)βη. (16)

The Fourier modes of the density fluctuations thus decouple, so that the multiple integral in
equation (11) can be evaluated in Fourier space as a product of Gaussian integrals

∫
dδ n1 · · ·

∫
dδ nL exp


−


1

2

∑
i

δni ·σi · δni +
∑
〈ij〉

βδni ·η · δnj






= LL

∫
dδ ñk1 · · ·

∫
dδ ñkL

exp

(
−L

2

∑
k

δñbf−k · D(k) · δñk,

)

= (2π)L
∏

k

1√|D(k)| . (17)
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Figure 4. Virial equation of state of a one component lattice system with on site interaction
ε = 1kBT and nearest-neighbour interaction η = 0.1kBT (triangles), η = 0.2kBT (circles) and
η = 0.3kBT (squares). For βη > 1/6 our analysis predicts an instability of the homogeneous
phase towards microphase separation beyond a certain density. For η = 0.1kBT this criterion
is not obeyed and the fluid remains stable at all densities. For η = 0.2kBT the instability is at
n∗ = 4.48 (outside the density range of this plot) and for η = 0.3 it is at n∗ = 0.69.

The grand partition function then reduces to

� =
[

exp

{
1

2
n∗ · (ε + qη) · n∗ +

∑
α

n∗
αψ(n∗

i,α + 1) − ln �(n∗
α + 1)

}]L

×(2π)L exp

{
−L

2

∫
dk

(2π)3
ln (|D(k)|)

}
(18)

leading to the equation of state (e.o.s.)

βPv0 =
∑

α

[n∗
αψ(n∗

α + 1) − ln �(n∗
α + 1)] +

1

2
n∗ · (ε + qη) · n∗ + ln(2π)

− 1

2

∫
dk

(2π)3
ln (|D(k)|) . (19)

In the limit of large occupation numbers (n∗
α � 1) and vanishing nearest-neighbour interaction

(η = 0) we recover equation (8). As in the case without nearest-neighbour interaction, there
is a thermodynamic inconsistency between the e.o.s. (19) and the dependence of the chemical
potentials on the occupation numbers (12). Integrating the latter would again lead to an
e.o.s. similar in structure to equation (19), albeit without the final two logarithmic terms.
The virial equation of state is shown in figure 4. For high nearest-neighbour interaction
(ε − qη no longer being positive definite) the fluctuation term diverges at k = (π, π, π).
This instability indicates a transition of the ground state from the homogeneous phase to a
microfluid phase where high and low occupation numbers alternate in a checkered fashion.
To show that the microphase exists also for the one-component fluid (for qη > ε) a canonical
Monte Carlo simulation was run on a 10 × 10 × 10 cubic lattice (q = 6) with the parameters
ε = 0.1kBT , η = 0.033kBT . Initially every lattice site was filled with 20 particles. After
equilibration a histogram of the occupation numbers occurring over the next 1 000 000 steps
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Figure 5. Histogram of the occupation numbers in a one component lattice system (10 × 10 × 10)

with ε = 0.1kBT and η = 0.033kBT . The probability p(n) to find a lattice site with occupation
number n (averaged over 1 000 000 steps after equilibration) is shown. The canonical simulation
was started with 20 particles on each lattice site. Because of the large nearest-neighbour interaction
the initially homogeneous fluid develops into a microphase with a bimodal distribution of the
occupation numbers.

was recorded. The result is shown in figure 5. It is clearly seen that the initial peak at
n = 20 has vanished and a bimodal distribiution around n ≈ 0 and n ≈ 40 has developed.
The development of the microphase is easy to understand when we estimate and compare
the energetic and entropic costs of the microphase with (mean) occupation numbers na and
nb with those of a homogeneous phase with average density n̄ = (na + nb)/2. The entropy
of the microphase per site is smicro = kB[na ln na + nb ln nb]/2, compared to that of the
homogeneous phase shom = kBn̄ ln n̄. The difference between the two is simply the mixing
entropy of the ideal gas, thereby favouring the homogeneous density distribution. On the other
hand the internal energy of the microphase per site is umicro = εn2

a

/
4 + εn2

b

/
4 + qηnanb/2,

compared to that of the homogeneous phase uhom = (ε + qη)n̄2/2. The difference between
the two internal energies is umicro − uhom = (ε − qη)(nb − na)

2/8. For strong nearest-
neighbour interaction the microphase is therefore energetically favoured. The nature of the
transition from the homogeneous state to the micro state will be investigated elsewhere. We
note that a similar transition has been discussed by Likos et al for a continuous soft core
system [12].

The explicit knowledge of the Fourier components of the density fluctuations allows us
to evaluate the structure factor of the fluid. For k �= 0 we obtain

Sαβ(k) = 1

n∗
1 + n∗

2

〈δ̃nα(k)δ̃nβ(−k)〉

= 1

n∗
1 + n∗

2

∫
dδ̃n1(k)

∫
dδ̃n2(k)δ̃nα(k)δ̃nβ(k) exp(−δ̃n(k) · D(k) · δ̃n(k))∫

dδ̃n1(k)
∫

dδ̃n2(k) exp(−δ̃n(k) · D(k) · δ̃n(k))

= 1

n∗
1 + n∗

2

(
D−1)

αβ
(k). (20)

From the particle–particle structure factors Sαβ the Bhatia–Thornton structure factors [14]
can be extracted. These are compared with data from a canonical Monte Carlo simulation in
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Figure 6. Bhatia–Thornton structure factors for the symmetric binary mixture with βε11 = βε22 =
0.1, βε12 = 0.2,η = 0.1ε. The mean-field values (open symbols, lines) are compared to simulation
data of a canonical Monte Carlo simulation (filled symbols) on a 10×10×10 lattice. The density–
density (Snn, triangles), density–concentration (Snc, circles) and concentration–concentration (Scc,
squares) structure factors along the 111-direction for the occupation numbers 〈n1〉 = 10, 〈n2〉 = 1
are shown. The statistics for the simulation data is known to be poor in k-space.

figure 6 for the phase point 〈n1〉 = 10, 〈n2〉 = 1. The agreement is reasonable, although there
are still fairly large statistical errors, a problem commonly encountered in direct calculations
of S(k) (as opposed to Fourier transforming g(r)). The error bars on the simulation results
(not shown) are rather large.

In the calculations above we neglected all contributions from configurations in the partition
sum (11) other than the (presumed) ground state, where all occupation numbers are the same.
This is of course only justified when the other configurations have much higher energies. To
check this hypothesis, we explore the energy landscape of small lattice systems with µ1 = µ2.
For a 2 × 2 × 2 lattice systems, one can explicitly enumerate all local energy minima. In the
case of no nearest-neighbour interactions the Boltzmann factor has 28 degenerate local maxima.
Slowly switching on nearest-neighbour interactions by setting η = λε and varying λ, one can
numerically follow the local maxima of the Boltzmann factor. Due to the high symmetry, many
local minima stay degenerate even at finite nearest-neighbour interaction. When increasing
η, some local minima turn into saddle points and vanish, as illustrated in figure 7. The
remaining excited energy states depending on λ are shown in the same figure. The increasing
gap between the ground state and the excited states is clearly seen. For larger lattices the
explicit enumeration of all local minima is no longer feasible because of their large number.
We therefore resort to a simple Metropolis algorithm employed in numerical optimization
problems [13]. Instead of systematically searching the 2L-dimensional occupation number
state, we generate trial configurations randomly from the previously found local minimum,
analogous to the random particle displacements used in Monte Carlo simulations. After
each random step in the space of occupation numbers a local minimization of the energy is
performed. The random step is then accepted or rejected based on the energy difference of
the two local minima. Effectively the very rugged energy landscape is therefore replaced
with a locally constant function, thereby eliminating the numerical problems one usually
encounters when solving global optimization problems. In figure 8 the resulting local energy
minima are shown together with the (presumed) homogeneous ground state. All the minima
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Figure 7. Local energy minima for a 2 × 2 × 2 lattice system at µ1 = µ2 = 6.5kBT . The energy
minima are degenerate for vanishing nearest-neighbour interaction (λ = 0) and split for finite λ

into sets of local minima related by symmetry of the lattice. At certain critical λ, some minima
turn into saddle points and vanish, as visualized in the inset.
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Figure 8. Absolute ground state energies in a 5 × 5 × 5 lattice at βµ1 = βµ2 = 6.5 as
found by the optimization procedure described in the text (plusses) compared to the energy of the
homogeneous state, as a function of the nearest-neighbour interaction η = λε. On site interactions
are ε11 = ε22 = 0.1kBT , ε12 = 0.2kBT .

lie on or slightly above the presumed ground state, thereby supporting our hypothesis that
the ground state is the homogeneous state. In figure 9 the difference between the local
minima and the ground state energy is plotted. Even though some local minima are not found
during the search, one can clearly see a trend of an increasing gap between the ground state and
the first excited state when the nearest-neighbour interaction increases. For a nearest neighbour
interaction that equals 10% of the on-site interaction one finds a gap of approximately 1.5kBT .
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Figure 9. Local energy minima with respect to the ground state, as found by the optimization
procedure described in the text. The on site interactions are ε11 = ε22 = 0.1kBT , ε12 = 0.2kBT .
The nearest-neighbour interactions are η = λε with λ = 0, 0.005, 0.01, . . . , 0.1. It is clearly
seen that the energy gap from the ground state to the first excited state increases with increasing
nearest-neighbour interaction. The ground-state approximation should therefore become more
accurate for stronger nearest-neighbour interaction.

Even stronger nearest-neighbour interaction should further widen the gap, leading to a higher
accuracy of the ground-state approximation.

5. Gibbs ensemble simulations

To test the validity of the ground state approximation, Gibbs ensemble Monte Carlo simulations
[15] of the model have been performed on a 10 × 10 × 10 lattice. After an equilibration time
of 1 000 000 steps two lattices were allowed to exchange particles and random moves within
each lattice were attempted according to the standard metropolis algorithm. The simulations
were restricted to symmetric interactions with ε11 = ε22 and η11 = η22. Since in these
systems the equation of state must be invariant with respect to relabelling of the species (or
equivalently mirroring the concentration x → 1 − x), volume changes of the lattice were not
necessary, i.e. the two lattice systems were automatically under equal pressure. Two typical
phase diagrams are shown in figures 10 and 11. It is seen that the ground-state approximation
predicts the correct shape of the phase diagram, albeit underestimates the densities of the
coexisting phases. The discrepancy becomes larger for larger interaction energies, when the
contributions of the excited states are no longer negligible and the ground-state approximation
becomes less accurate.
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Figure 10. Phase diagram of a symmetric binary lattice system with ε11 = ε22 = 0.1kBT , ε12 =
0.2kBT , η = 0.1ε. The phase coexistence points of the Gibbs ensemble simulation (crosses) and
the predictions of the binodal (solid line) and spinodal (dashed line) based on the ground-state
approximation are shown. No microphase separation is expected for such low nearest-neighbour
interactions.
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Figure 11. Phase diagram of a symmetric binary lattice system with ε11 = ε22 = 0.5kBT , ε12 =
1kBT , η = 0.1ε as in figure 10.

6. Conclusion

The lattice model introduced in this paper, which allows us for multiple occupancy of lattice
sites by one or two species, with positive energy penalties, and includes repulsive nearest-
neighbour interactions, leads to interesting phase behaviour. In the one-component version, a
steepest descent analysis allowing for Gaussian fluctuations, predicts microphase separation
onto two interpenetrating sub-lattices with different mean occupation numbers (‘checkered’
phase) when the ratio η/ε of nearest-neighbour to on-site couplings exceeds a threshold. This
prediction is confirmed by Monte Carlo simulations.
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The two-component extension of the model leads to a macroscopic demixing transition
into phases of different concentrations of the two species. The steepest descent analysis
predicts such a phase separation, even in the absence of nearest-neighbour interactions, but
this is shown to be due to the expected break-down of the approximation. In the presence
of nearest-neighbour interactions, the steepest-descent analysis corresponds to a ‘ground-
state’ approximation. A numerical search of local minima of the energy surface points to
a significant gap (>1kBT ) between the homogeneous ‘ground state’ and the first ‘excited
states’, thus providing support for the validity of the approximation. The predicted phase
diagrams agree reasonably well with the results of Gibbs ensemble MC simulations. The
present model is directly inspired by the continuous ‘Gaussian core’ model, first introduced
by Stillinger [6], and which has recently been shown to provide an adequate coarse-grained
description of interacting, interpenetrating polymer coils [3]. The corresponding lattice model,
considered here, appears to have some unorthodox features. In contrast to more familiar lattice
gas models, it is not isomorphous to an Ising spin model. Hence it is not yet clear whether
its critical behaviour belongs to the Ising universality class. The binary version is expected
to exhibit both the microphase separation found here in the one-component case, and the
macroscopic phase separation analogous to that of the continuous binary Gaussian core model
[8–10]. The interplay between these two phase transitions should lead to interesting and novel
behaviour, which will be explored in future work.
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[7] Lang A, Likos C N, Watzlawek M and Löwen H 2000 J. Phys.: Condens. Matter 12 5087

Likos C N, Lang A, Watzlawek M and Löwen H 2001 Phys. Rev. E 63 1206
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